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0. A primer on feedstocks 

and chemical products  
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From W. Banholzer, DOW 
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A new biobased economy:  

Principally, a feedstock, market 

and technology story  

 Sugar-biomass based: 
 Great availability 

 Alternative sources. No need to compete with food 

 Dramatically alters decision making with regards to 

resource utilization  

 Biotechnology is natural technology for sugar 

 modification and upgrade to bio-products 

 Growing market for products with low carbon 

 footprint  
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Metabolic Engineering, the biotech 

revolution, and the chemical-fuels industry 

(White Biotech)  

 Fuels and chemicals were the initial biotech target 

 Cetus (Chiron), Genex, Biogen 

 More challenging technical problem than insulin 
 Switch of emphasis to medical applications 

 Changing boundary conditions  

 Emphasis on renewable resources 

 Robust US federal funding  Applied mol. biology  

 Genomics 

 Systems Biology: a new mindframe in biological research 

 Metabolic Engineering 

 Exploit applications of biology beyond medicine 
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Comparing  

Chemistry vs. Biotechnology 

 Biotechnology: Higher selectivity 
 Much better in converting sugars to products 

 Generally, smaller plants, lower capital cost 

 Biotechnology: Exquisite specificity in carrying out 

 difficult reactions 

 Biotechnology: Better at new synthesis 

 Chemistry: Faster 

 Chemistry: Better in converting petroleum-fossil 

 feedstocks 

 Chemistry: Better in operating in adverse conditions  
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I. Origins of  

Metabolic Engineering  
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Mixed cultures: Multi-step 

synthesis within a single tank 

Scale 

V (L) 
Feed Tank 

F (L/h) 

Waste 

Tank 

F (L/h) 

Parameters: 

•  Dilution Rate, D=F/ V 

•  Substrate feed, Sf 

M1 
+ 

B1 

S 

B2 P 
(Glucose) 

+ 

+ M2 

- 

Science, 213: 972-979 (1981) 
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Metabolic Engineering:  
Engineering multi-step  
pathways within  
a single cell 
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Leaders 

• Jay Bailey 

• Tony Sinskey 

• Terry Papoutsakis 

• Lonnie Ingram 

• Jim Liao 

• Ka-Yiu San 

• European group (Nielsen, Heijnen) 

• Korean-Japanese researchers (Sang Yup Lee) 
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Metabolic Engineering as a new 

Organic Chemistry 

Metabolic Engineering: Making improved 

biocatalysts capable of: 

 Enhanced production of a native product 

 to a microorganism 

 Formation of a product that is new to the 

 microorganism 

 Synthesizing novel products 
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Science, 252: 1675 (1991) 

Biotech. & Bioeng. 41 633 (1993), 

Biotech. Progress, 10: 320 (1994) 

Biotech. & Bioeng. 58: 149 (1998) 
Science: 292:p.2024 (2001) 

Metabolic Engineering: Strain 

improvement using genetic tools 
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Schematic pathway of aminoacid biosynthesis in 
C. glutamicum 
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Probing metabolic pathways using 

isotopic tracers 

Capable of: 

 

• Reconstructing metabolic networks 

 

• Calculating pathway fluxes 

 

• Identifying rate-controlling steps  
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Schematic pathway of aminoacid biosynthesis in 
C. glutamicum 
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Simultaneous amplification of  

pyc and ask increased lysine qp  

by 100-300% 

Park et al.,Biotech. & Bioeng., 55: 864 (1997) 

Koffas et al., Metabolic Eng., 5:32-41, (2003)  
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Example: Indene biocatalysis for the 

synthesis of Crixivan precursor 

• Crixivan™:  Merck’s HIV protease inhibitor 

N

N

N
H
N

OH

O NHC(CH3)3
O

OH

·H2SO4

Aminoindanol 

• Chemical synthesis of aminoindanol requires the use of  

 expensive catalyst and gives low yields. 

• Increased production is desired to meet patient needs  

 (1 kg/patient/year). 

• Bioconversion can potentially result in 100% yield. 

• Project focus on production of 2R-indandiol.  
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Indene Bioconversion by Rhodococcus 

Stafford et al., PNAS, 99:1801-1806, (2002); 

European J. of Biochemistry, 278: 1450-1460 (2001) 
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ME of Indene Bioconversion: Summary 

indene

OH
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1,2-indenediol

O
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1. Isolation of KY1 (Y=50%) 
2. Network definition 
3. Flux analysis 
4. LimA overexpression (Y=75%) 
5. pH optimization (Y=95%) 

Stafford et al., PNAS, 99:1801-1806, (2002) 

Accademia dei Lincei 

Int’l Year of Chemistry, Milano-2011 G. Stephanopoulos 
Bioinformatics and Metabolic 

Engineering Laboratory 

20 Years of  

Metabolic Engineering 

 20 very productive years 

 Established identity of ME with distinct 

 goals and intellectual content 

 Recognized for high quality. Evidence: 

 ME conference 

 Journal publications  

 Metabolic Engineering journal 

 Good record of real accomplishments  

 Recent successes have emboldened new 

 research in higher risk areas 
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II. Differentiating 

characteristics of  

Metabolic Engineering  
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How does Metabolic Engineering differ 

from Genetic Engineering? 

… Metabolic engineering differs from Genetic 

Engineering and related molecular biological 

sciences in that it concerns itself with the 

properties of the entire metabolic network as 

opposed to individual genes and enzymes.   

 
"Metabolic Engineering: Issues and Methodologies," Trends in Biotechnology, Vol. 11, pp. 

392-396 (1993)  
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Differentiation of  

Metabolic Engineering 

 Integration. Concern about the function of 

 the entire pathway (Systems biology) 

 Established identity of ME with distinct 

 goals and intellectual content 

 Pathway optimization using concepts from 

 Chemical Reaction Engineering (not 

 stitching genes together) 
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What is  

Metabolic Engineering? 
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1. Flux determination in metabolic networks. 

Identification of bottlenecks in pathways 

2. Precise control of gene expression and 

metabolic fluxes 

3. Constructing new metabolic pathways 

 - Cloning or synthesizing genes (codon 

optimized) from various sources and transferring 

them to the host cell 

 - Identifying gene targets 

4.  Eliciting tolerance to various stresses 

5. Inverse Metabolic Engineering 

Technologies of Metabolic Engineering 
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III. Accomplishments of 

Metabolic Engineering  
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Past record of Metabolic Engineering 

 Aminoacids: Increases in lysine spec. productivity by 120-300% 

 Ethanologenic E. coli (also: butanologenic E. coli) 

 Biopolymers (Metabolix-ADM) 

 1,3 propane diol (DuPont-Tate and Lyle) 

 Indan-diol production (precursor of Crixivan-HIV protease 
inhibitor): Yield increased from 25% to 95% 

 Artemisinin (amorphadiene) production by yeast and E. coli 

 Lycopene production in E. coli: Increase from 4,500 to ~25,000 
ppm of CDW, fermentations  250 mg/L 

 Many other applications: 
  Succinate 

  3-HPA 

  Threonine 

  Tamiflu precursor 
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C&E News, Business Concentrates, March 16, 2009 
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III. Accomplishments of 

Metabolic Engineering: 

 

Expressing whole pathways, 

natural or unnatural, in 

microorganisms  

Accademia dei Lincei 

Int’l Year of Chemistry, Milano-2011 G. Stephanopoulos 
Bioinformatics and Metabolic 

Engineering Laboratory 

Aromatic amino acid biosynthetic pathway 

E4P + PEP 

aroF 

DAHP 

Shikimate 

Chorismate 

Prephenate 
pheA 

tyrA 

aroG,H 

4-HPP 

L-Trp 

L-Phe 

L-Tyr 

Rational Design Approaches 

1.  Eliminate main competing reactions (pheA deletion) 

2.  Overexpress enzymes constituting major bottlenecks 
(aroG, tyrA) 

3.  Eliminate feedback repression of enzymes (aroGfbr, tyrAfbr) 

4.  Eliminate negative transcriptional regulator (TyrR 
deletion) 

32 

TyrR 

AAA genes 
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Naringenin Production 

33 

• Economic incentive for producing naringenin 

directly from glucose 

* Calculated from prices of the largest 

available quantities on Sigma-Aldrich 
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Menthol 
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product chemistry  
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III. Accomplishments of 

Metabolic Engineering: 

 

 

Conducting difficult and new 

chemistry  
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Pentanol Synthesis  

36 

Challenges: 

1. Supply of building block 

(Propionyl-CoA) 

2. Condensation reaction of 

C2 + C3 

3. Acceptance of 5-carbon 

substrates for the rest of 

pathway enzymes 
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Redirecting Carbon Flux 
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37 

CoA activator 

CoA remover 

HPLC analysis 
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Pivalyl CoA 
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Isobutyryl 
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Butyryl 
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Coenzyme B 

Mutases: The branching enzymes 
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Mutase 

Pivalic acid pathway 
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Beyond C5 
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Thiolase 

Dehydrogenase 

&  

Dehydratase Mutase Reductase 

Biofuels toolkit 
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Biofuels toolkit 
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P450 oxidation: First step in the  

pathway to taxol 
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Metabolic Engineering: 

 

Platform for a Biobased 

economy  
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Metabolic Engineering: 

 

Platform for discovery and 

production of new therapeutics  
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2- synthase 
8 – hydroxylase 
5 – transferase 

2- oxidase 
1 - Aminomutase 
1 - Co-ligase  

19- enzymes from IPP and DMAPP 

Taxol pathway 

Future directions of ME-2 
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The Pharm 

Synthetic 

Biosynthetic 
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Our Vision of the Pharm 

Combinatorial 

chemistry 

High-throughput 

screening 

Metabolic 

engineering 
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A few illustrative examples 
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Example 1 

 

Engineering an obese 

microbe for  

oil overproduction 
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Converting sugars to oil for  

Biodiesel production 

 Key points: 

 It is a bad idea to use vegetable oils for biodiesel 

 Sustainable biodiesel production MUST be based 

 on carbohydrates        Gallons GE/acre/year 

Soybeans     48 

Sesame     74 

Jatropha     202 

Cellulosic ethanol    533 

Sugarcane ethanol    566 

Algae             ~6,000  

 Need organisms capable of converting sugars to 

fats and  lipids (or Free Fatty Acids, FFA) 
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Conversion Yield is critical 

1 Gallon of biodiesel = 3.8 Liters = 3.4 Kgs 

 

Assuming a Theoretical Yield of 31%, 3.4 Kgs can 

be produced from 3.4 / 0.31 = 11 Kgs of Glucose 

 

that costs ~ $1.20-1.40 

 

• Hence, biodiesel can be produced from sugars 

at an estimated total cost of $1.80-2.00 

 

• Key: Achieving yields as close to 

 maximum as possible 
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Wild type 

Recombinant Some results on recombinant 

oil producing microbe 

Total sugar consumed: 312 g/L  

Total oil produced: 80g/L in 72 hours  

Yield: 29.4% 

Theoretical Maximum Yield: 31% 

0

10

20

30

40

50

60

70

80

90

0 24 48 72
F

A
M

E
 (

g
/l

) 

Lipid production  

Accademia dei Lincei 

Int’l Year of Chemistry, Milano-2011 G. Stephanopoulos 
Bioinformatics and Metabolic 

Engineering Laboratory 

72 hour fermentation. C5 Xz supplemented with 200g/L of glucose. 

Yield for mutant 3 is 41/155 = 26.5% 

Mutant 2 Mutant 1 Mutant 3 

41 

155 
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Example 2 

 

Engineering the isoprenoid 

pathway for natural product 

overproduction 

 

Accademia dei Lincei 

Int’l Year of Chemistry, Milano-2011 G. Stephanopoulos 
Bioinformatics and Metabolic 

Engineering Laboratory 

Menthol 

Terpenoid Biosynthetic pathway: Diversity in natural 
product chemistry  
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Engineering other terpenoid pathways in 
isoprenoid precursor pathway engineered E. coli 

• Levopimaradiene – precursor 
for Ginkolide 

• Ginkolide – pharmacological 
ly active against Alzheimer's 
and dementia 

5 fold increase in 
lycopene production 
compared previously 
reported pathway 
engineered strain 
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62 

How efficient is the MEP Pathway? 

• Prior studies yielded modest results (a 
few mg/L of taxadiene) 

• Is the MEP pathway somehow 
deficient in isoprenoid production? 
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Engineering Taxol biosynthetic pathway in E. coli 
 

– most challenging and complex chemistry in natural products 

19- enzymes from IPP and DMAPP 
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Upstream pathway 

Downstream pathway Two genes, GGPP synthase and Taxadiene synthase  
from taxus Pacific yew are grafted into E. coli isoprenoid pathway 
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Modulating the upstream and downstream 
pathway for amplifying taxadiene production 

YW140=T5 single 
YW22=T7, single 
AP5TrcGT=single 
AP3TrcGT=10 copies 
AP4TrcGT=5 copies 
AP4TrcTG=5 copies 
AP4T5GT=5 copies 



33 

Accademia dei Lincei 

Int’l Year of Chemistry, Milano-2011 G. Stephanopoulos 
Bioinformatics and Metabolic 

Engineering Laboratory 

Accademia dei Lincei 

Int’l Year of Chemistry, Milano-2011 G. Stephanopoulos 
Bioinformatics and Metabolic 

Engineering Laboratory 



34 

Accademia dei Lincei 

Int’l Year of Chemistry, Milano-2011 G. Stephanopoulos 
Bioinformatics and Metabolic 

Engineering Laboratory 

Unknown molecule 

Internal standard 
 

MS -  unknown  
molecule 

MS -  Taxadiene 

Why the optimal expression for high taxadiene production?  
Presence of unknown inhibitory molecule in the pathway 

AP2T7TG 

AP2T7TG-IPTG 
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Taxadiene accumlation

Science, 330: 70-74 (2010).  
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Fermentation of taxadiene producing strain 

AP2T7TG 

• Taxadiene production: ~1,700 mg/L  

Science, 330: 70-74 (2010)  
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2- synthase 
8 – hydroxylase 
5 – transferase 

2- oxidase 
1 - Aminomutase 
1 - Co-ligase  

19- enzymes from IPP and DMAPP 

E coli isoprenoid pathway 

Taxol pathway 

Engineering Taxol biosynthetic pathway in E. coli 
 

– most challenging and complex chemistry in natural products 
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Next Step: Taxadiene to Taxa-4(20),11,12-dien-5a-ol  

Engineering P450 hydroxylases towards the biosynthesis of taxol 

The N-terminal of the P450 
and P450 reductases 
truncated and constructed 
fusion protein with linker for 
optimal expression in E coli 

GST

A

B

C

D

E

F

mammalian-derived leader sequence, 

MALLLLAVF, the eight-residue mammalian 
peptide derived from the N-terminal region of 
the bovine 17a hydroxylase

N-terminal region identified for 45 Amino 

acid and 74 Amino acid truncations in 
Taxoid 5α-hydroxylase and Taxoid NADPH 
p450 reductase

GC-MS spectra of  
Taxa-4(20),11,12-dien-5a-ol 
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Example 3 

 

Engineering Escherichia coli 

to overproduce tyrosine 

directly from glucose 
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74 

Dietary supplement 

O 

NH2 
HO 

OH 

L-tyrosine L-DOPA (levodopa) 

p-coumaric acid 

O 

NH2 
HO 

OH 

HO 

Carbidopa 

O 

NH-NH2 
HO 

OH 

HO 

H3C 

O 

HO 

OH 

Parkinson’s disease treatment 

Specialty chemicals and polymers 

Flavonoids 

anti-allergic 

anti-inflammatory 

antimicrobial 

anti-cancer 

antioxidant 

L-tyrosine is a valuable compound 
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Aromatic amino acid biosynthetic pathway 

E4P + PEP 

aroF 

DAHP 

Shikimate 

Chorismate 

Prephenate 
pheA 

tyrA 

aroG,H 

4-HPP 

L-Trp 

L-Phe 

L-Tyr 

Rational Design Approaches 

1.  Eliminate main competing reactions (pheA deletion) 

2.  Overexpress enzymes constituting major bottlenecks 
(aroG, tyrA) 

3.  Eliminate feedback repression of enzymes (aroGfbr, tyrAfbr) 

4.  Eliminate negative transcriptional regulator (TyrR 
deletion) 

75 

TyrR 

AAA genes 
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Rational design is a good start… 

Rational Design Approaches 

1.  Eliminate main competing reactions 
(pheA deletion) 

3.  Overexpress enzymes constituting 
major bottlenecks (aroG, tyrA) 

4.  Eliminate feedback repression of 
enzymes (aroGfbr, tyrAfbr) (T. Lutke) 

2.  Eliminate negative transcriptional 
regulator (TyrR) 

76 

Rationally-Designed Strains 

… but can Inverse Metabolic Engineering    
          get us further? 
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Inverse metabolic engineering 

? 

multiple iterations 

Screening for a phenotype of interest 

Serial subculturing (selection) 

• Solvent tolerance (ethanol, SDS, 
lactate) 

Colorimetric  assays 

• Lycopene production 

• Hyaluronic acid production 

• L-tyrosine production 

Generating combinatorial libraries 

• Transposon mutagenesis 

• Genomic complementation 

• Global transcription machinery 
engineering (gTME) 

Genetic methods 

Chemical methods 

• Nitrosoguanidine mutagenesis 
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78 

A high-throughput screen based on melanin synthesis 

Tyrosinases catalyze the conversion of L-tyrosine to melanin 

Cabrera-Valladares et al., Enzyme and Microbial 
Technology (2006), 38, 772-779. pTrc melAmut1 

Ptrc 

melA (R. etli) 

L-tyrosine production can be monitored (via 
melanin synthesis) with a single reporter 
plasmid. 
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Melanin synthesis on agar plates 

Plates with different L-tyrosine concentrations can be easily differentiated based on the 
amount of melanin produced.    
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80 

Global Transcription Machinery Engineering (gTME) 

RNA polymerase 

rpoA – α subunit      rpoD – sigma factor 70  

Error-prone PCR 

rpoD library size:   3.1 x 106 viable colonies 

rpoA library size:   7.5 x 105 viable colonies 

Transform into E. coli 

rpoAWT/ rpoDWT 

Parental strain:  K12 ΔpheA tyrR::tyrAfbraroGfbr  lacZ::tyrAfbraroGfbr 
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Melanin synthesis by L-tyrosine production strains 

A 

B 

C 

D 

E Strain L-tyrosine production (mg/L) 

A 7 

B 156 

C 175 

D 347 

E 433 
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gTME library mutants 

Tyrosine production of mutants 

• Isolated  three strains exhibiting 77-
113% increases in L-tyrosine 
production  
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Mutations in rpoA and rpoD 

rpoA mutations 

rpoD mutations 

WT 

rpoD3 

1.1 1.2 2 3 4 

D521E 

WT 

rpoA14 

rpoA27 

N-terminal domain C-terminal domain 

L281P V257F 
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Phenotype requires mutant plasmid and background 

Tyrosine Production of cured and/or retransformed strains 

B – background 
P – plasmid 

black uppercase – wild type 
red  lowercase – mutant 

* original isolate 
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‘Omics approaches for strain characterization 

Transcriptional analysis 
(microarrays) 

Whole genome sequencing 

Look for patterns of differential 
gene expression 

Scan the entire genome for sequence 
variations 

Accademia dei Lincei 

Int’l Year of Chemistry, Milano-2011 G. Stephanopoulos 
Bioinformatics and Metabolic 

Engineering Laboratory 

Summary: strain equivalences 

Original isolates (~1,000 mg/L of tyrosine) =  

 

Mutant background + rpoA or rpoD mutant plasmids =  

 

Mutant background + overexpression of EvgA or RelA 

(regulators of AR or stringent response via ppGpp) =  

 

Wild type E. coli harboring HisA or PurF mutations + 

mutant plasmids or EvgA/RelA overexpression  

(a completely genetically defined strain overproducing 

tyrosine)  

86 
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1.5-l Fermentations in MOPS and R media 

87 
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Trade-off between yields and maximum 

productivities/titers 
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IV. What is in the future?  
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Future applications drivers 

 Sustained interest in utilization of renewable 

resources 

 

 Pressure on commodities will continue 

 Climate change concerns will persist 

 Biotechnology is better than chemistry in 

 utilizing carbohydrates 
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Future applications drivers 

 New technology push: 

 Chemical synthesis of heterologous genes  

 Increased appreciation of systemic 

 approaches to pathway engineering (mind-

 frame of Systems Biology)  

 Increased experimentation with pathway 

 construction harboring random DNA 

 combinations (Synthetic DNA) 

 Inverse Metabolic Engineering 

 Development of High-Throughput screens 

 for chemicals production 
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Future directions of ME-1 

 Expand portfolio with numerous new applications: 

 

 Invasion to the core of the chemical industry at 

oil prices greater than $100/bbl  (xylenes, 

terpenes, isoprene, butadiene,…) 

 Best technology for specialty chemicals 

 (specific oxidations, acylations,  amidations, 

 stereo-specific compounds, API’s, …)   

 Tremendous diversity of new products 

 (isoprenoid pathway, glycosylated 

 compounds,  
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Future directions of ME-2 

 Providing platform  

for discovery and production  

of new therapeutics 
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        The end 

Questions? 

Accademia dei Lincei 

Int’l Year of Chemistry, Milano-2011 G. Stephanopoulos 
Bioinformatics and Metabolic 

Engineering Laboratory 

Upregulated genes identified by microarrays 

•  4 out of 7 upregulated genes in rpoA27 were related to acid resistance 

•  8 out of 17 upregulated genes in rpoD3 were related to acid resistance 

94 
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Acid resistance (AR) proteins and function 

gadABC – glutamate-dependent  AR system 

L-glutamate 4-aminobutyrate 
GadA, GadB 

+ CO2 

hdeAB – acid stress chaperone proteins 

• Prevent aggregation of perisplasmic proteins at acidic pH 

• Form mixed aggregates with proteins that have failed to solubilize at acidic pH and 

allow their subsequent solubilization at neutral pH  

L-Glutamate 

4-aminobutyrate 

GadC 

extracellular 

intracellular 

H+ + 

95 
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Transcriptional network for acid resistance system 

96 

Masuda and Church, Mol Microbio (2003), 48, 3: 699-712. 

Transcriptional regulators 

EvgA, YdeO 

GadE (YhiE) 
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Overexpression of acid resistance regulators 

Tyrosine Production with overexpression 

Only modest (22-26%) increases in L-tyrosine production 

97 
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Downregulated pathways identified by microarrays 

98 
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A role for (p)ppGpp and the stringent response 

99 

Magnusson et al., Trends in Microbiology 
(2005), 13 (5): 236-242. 
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Overexpression of relA 

Tyrosine production with relA 

Only modest increases (~25%) in L-tyrosine production 

100 
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Overexpression of targets in mutant backgrounds 

EvgA, YdeO, GadE – acid resistance transcriptional regulators 

RelA – ppGpp synthetase 

101 

“high, low” stand for high (PL) and 

low strength promoter 
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‘Omics techniques for strain characterization 

Transcriptional analysis (microarrays) Whole genome sequencing 

Look for patterns of differential 
gene expression 

Scan the entire genome for sequence 
variations 
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Whole Genome Sequencing – SNP summary 

103 

•  Histidine and purine biosynthetic pathways have two shared precursors/intermediates 

•  Both hisH and purF share similar enzyme functions and glutamate utilization 

R: Reference, S: Substituted base pair 
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Verification of SNPs 

Tyrosine Production with purF and hisH mutations 

104 

All mutations are capable of enhancing L-tyrosine production when 

combined with rpoA/rpoD expression 


